The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
 0 X^2  0  0 X^2  0 X^2 X^2 2X^2  0  0 X^2 X^2  0 2X^2 X^2 2X^2 2X^2  0 X^2 2X^2  0 X^2 2X^2 2X^2 2X^2 2X^2  0  0  0 X^2 X^2  0 X^2 X^2 2X^2  0  0 X^2 X^2  0 2X^2 X^2 2X^2 2X^2  0 X^2 2X^2  0 X^2 2X^2 2X^2 2X^2 2X^2  0  0 X^2 X^2  0 2X^2 X^2 X^2 X^2  0 X^2 X^2 2X^2  0  0 2X^2 X^2 2X^2  0 2X^2 X^2 2X^2  0 2X^2 2X^2 2X^2  0  0  0 X^2 X^2  0 X^2 X^2 2X^2  0  0 X^2 X^2 2X^2 2X^2 2X^2  0 X^2
 0  0 X^2  0 2X^2 X^2 2X^2 X^2 2X^2  0 X^2 X^2  0 2X^2  0  0 X^2 X^2 2X^2 2X^2 2X^2 2X^2 X^2  0  0 X^2 2X^2  0  0 X^2 2X^2 X^2 X^2 2X^2  0 2X^2  0 X^2 X^2  0 2X^2  0  0 X^2 X^2 2X^2 2X^2 2X^2 2X^2 X^2  0  0 X^2 2X^2  0 X^2 2X^2 X^2 X^2  0 X^2  0 2X^2 X^2 X^2  0 X^2  0 2X^2  0 2X^2 2X^2 2X^2 2X^2  0 X^2 2X^2  0 X^2 2X^2  0  0 X^2 2X^2 X^2 X^2 2X^2  0 2X^2  0 X^2 X^2  0  0  0 X^2 2X^2 X^2
 0  0  0 X^2 2X^2 2X^2  0 2X^2 2X^2 2X^2 X^2  0 2X^2  0 2X^2 X^2 X^2  0 X^2 X^2 X^2 2X^2 X^2  0 X^2 2X^2  0  0 X^2 2X^2 2X^2 2X^2 X^2 X^2 X^2 2X^2 2X^2  0  0  0 X^2 X^2 2X^2 2X^2 X^2  0  0  0 2X^2 X^2  0 2X^2  0 X^2 X^2 2X^2 2X^2 2X^2 X^2 X^2  0  0  0  0 X^2 X^2 2X^2 2X^2 2X^2  0 X^2 2X^2  0 X^2 2X^2  0 X^2 2X^2 X^2  0  0 X^2 2X^2 2X^2 2X^2 X^2 X^2 X^2 2X^2 2X^2  0  0  0  0 2X^2  0 X^2 X^2

generates a code of length 98 over Z3[X]/(X^3) who�s minimum homogenous weight is 195.

Homogenous weight enumerator: w(x)=1x^0+192x^195+486x^196+24x^198+18x^204+2x^216+6x^222

The gray image is a linear code over GF(3) with n=882, k=6 and d=585.
This code was found by Heurico 1.16 in 0.437 seconds.